地源热泵原理-地源热泵是什么

地源热泵则是利用水源热泵的一种形式,它是利用水与地能(地下水、土壤或地表水)进行冷热交换来作为水源热泵的冷热源,冬季把地能中的热量“取”出来,供给室内采暖,此时地能为“热源”;夏季把室内热量取出来,释放到地下水、土壤或地表水中,此时地能为“冷源”。地源热泵供暖空调系统主要分三部分:室外地能换热系统、水源热泵机组和室内采暖空调末端系统。其中水源热泵机主要有两种形式:水—水式或水—空气式。三个系统之间靠水或空气换热介质进行热量的传递,水源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。

本文目录

地源热泵原理,地源热泵是什么?

基本概念和原理

地源热泵则是利用水源热泵的一种形式,它是利用水与地能(地下水、土壤或地表水)进行冷热交换来作为水源热泵的冷热源,冬季把地能中的热量“取”出来,供给室内采暖,此时地能为“热源”;夏季把室内热量取出来,释放到地下水、土壤或地表水中,此时地能为“冷源”。地源热泵供暖空调系统主要分三部分:室外地能换热系统、水源热泵机组和室内采暖空调末端系统。其中水源热泵机主要有两种形式:水—水式或水—空气式。三个系统之间靠水或空气换热介质进行热量的传递,水源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。

1、制冷工况

在制冷状态下,地源热泵机组内的压缩机对冷媒做功,使其进行汽—液转化的循环。通过冷媒/空气热交换器内冷媒的蒸发将室内空气循环所需携带的热量吸收至冷媒中,在冷媒循环的同时,再通过冷媒/水热交换器内冷媒的冷凝,由水路循环将冷媒所携带的热量吸收,最终由水路循环转移至土壤里。在室内热量不断转移至地下的过程中,通过冷媒—空气热交换器,以13-7℃的冷风的形式为房间供冷。

2、制热工况

在制热状态下,地源热泵机组内的压缩机对冷媒做功,并通过水路切换将水流动方向切换。由地下的水路循环吸收地下水或土壤的热量,通过冷媒/水热交换器内冷媒的蒸发,将水路循环中的热量吸收至冷媒中,在冷媒循环的同时,再通过冷媒/水热交换器内冷媒的冷凝,由空气循环将冷媒所携带的热量吸收。在地下热量不断转移至室内的过程中,以35-50℃的热水的形式向室内供暖。

3、应用

地源热泵是以地表能(包括土壤、地下水和地表水等)为热源,通过输入少量的高品位能源(如电能),实现低品位热能向高品位热能转移的热泵空调系统。与传统空调和供热系统相比,它具有可再生利用、运行费用低、占地面积小、节约水资源、有利环保等特点。

大家都知道,在南方夏季冷负荷比热负荷要大/北方冷负荷比夏季热负荷小,如果采用浅层地源热泵系统的话,常年的向土壤输送的热量比冷量要大/常年的向土壤输送的热量比冷量要小,那么若干年后是不是会引起地温升高/降低,该系统在该地区就不能使用或使用效果下降,即地热不平问题。显然不平衡是存在的,但是没有足够的数据和模型证明这种不平衡。地埋管平衡问题一直是比较棘手的问题,目前尚未见到不平衡导致系统无法运行的情况,想在理论上做的更有说服力的话需要建筑的全年动态负荷及使用负荷率时间表。目前地源界对此问题尚无定论,仁者见仁,智者见智。

对于冬冷夏热地区:冷负荷大于热负荷,在考虑到压缩机的功率,制冷时排热量大于制热时的吸热量。所以对于做浅层地源热泵之前,要先进行热平衡计算。夏季向地下放热,冬季向地源取热,两者在部分地区(夏季冷负荷和**负荷可以持平的地区)大体平衡。不平衡是动态变化的,随着地温的升高或降低,该地块的吸热或放热的能力也会变化。最后会趋于一种失效平衡。

一般的地源热泵可以从以下角度分析:先计算出夏天和冬天散热量(冷负荷)和吸热量(热负荷),如果大体平衡就不需采取别的措施。

1、如果夏天的散热大于冬天的吸热,那么就应该减少其散热量,可以采用热回收,把冷凝热回收一部分,如果仍然平衡不了,那么就加冷却塔,直到两者平衡为止。

2、相反如果冬天吸热大于夏天散热,那么就减少冬天的吸热量,可以采用锅炉分担部分负荷,以达到两者平衡的目的。目前大家都在用夏季辅助放热 冬季辅助收热的方法进行平衡 但是没有确切的方法和方案

3、先给建筑建立模型(可以选用SKetchUp、legacyOpenStudio和DesignBuilder进行建模),计算全年累计负荷。得出向土壤的吸热、放热负荷。然后用EnergyPlus软件j进行负荷模拟,看看是否在管数最合理的情况下平衡。

目前解决技术措施主要有三个:

1、需要生活热水的项目采用热回收(全热和余热皆可)技术,把一部分排热转化成热水,即分担部分地埋管的负担,又有免费的热水用,一举两得。也能够缓解夏季散热量大于冬季吸热量的问题;缓解程度和热回收量大小有关;

2、地埋管系统按照冬季采暖负荷进行设计;如果不能平衡,排热过多的话,夏季偏少部分通过增加单冷机组、无需生活热水的项目只能加冷却塔了。实现制冷量的补充。目前工程中采用辅助冷热源的项目多是埋管面积不够或是为了节省初投资。

3、地埋管系统按照夏季制冷量设计,冬季吸热过多,通过增加辅助散热措施、如东北寒冷地区,采暖时间比制冷时间长,冬季吸热量大于夏季排热,可采用辅助热源,如锅炉。提高地下的热补充量使之平衡。不过北方多集中采暖,鲜有为了热平衡才使用辅助源的。

该三个措施,严格意义上是从技术层次加以考虑,但是,从初投资角度考虑,第三种方案不合适;可以说,如何在经济性和稳定性之间寻找最佳的平衡点,还是值得我们去进一步的探讨和研究。

地源热泵原理-地源热泵是什么

什么是地源热泵?

地源热泵则是利用水与地能(地下水、土壤或地表水)进行冷热交换来作为地源热泵的冷热源。冬季把地能中的热量“取”出来,供给室内采暖,此时地能为“热源”;夏季把室内热量取出来,释放到地下水、土壤或地表水中,此时地能为“冷源”。

还是很绕?

简单说,地下水冬暖夏凉,冬天从这里面提取热量加热室内,夏天也从这里提取“冷量”给室内降温。

当然,除了地下水,地源热泵还可以利用地下水、江河湖水、水库水、海水、城市中水、工业尾水、坑道水等各类水资源,以及土壤,作为地源热泵的冷、热源。

地源泵简单原理?

利用岩土层储存的热能为建筑供暖制冷,通过地源热泵系统内的介质把地下土壤的温度传递到地源热泵主机,再通过少量的电能转化达到制冷和取暖的功能。

一元热泵的工作原理与家用的什么相同?

地源热泵的工作原理与家用电冰箱相同,通过制冷在蒸发器、压缩机、冷疑器和膨胀阀等部件中气相变化的循环,将低温物体的热量传递到高温物体中去。

地源热泵如何将地下水提升到40多度然后供暖的?

看来要先科普下地源热泵:

地源热泵是陆地浅层能源通过输入少量的高品位能源(如电能)实现由低品位热能向高品位热能转移。

地源热泵还利用了地下土壤巨大的蓄热蓄冷能力,冬季把热量从地下土壤中转移到建筑物内部,夏季再把地下的冷量转移到建筑物内部,只是冬夏两季工作的温度范围不同而已。

地源热泵的分类与应用形式

根据地热能交换系统形式的不同,地源热泵系统分为地埋管地源热泵系统、地下水地源热泵系统和地表水地源热泵系统。

埋管式土壤源热泵系统

垂直埋管地源热泵系统:换热器井管路直接接入机房、换热器井管路汇集到集水器。

垂直埋管-桩基换热器:

垂直埋管-地热智能桥:

螺旋埋管地源热泵系统:长轴水平布置的螺旋埋管、长轴竖直布置的螺旋埋管、沟渠集水器式螺旋埋管。

埋管式地源热泵应用方式

你问这些问题需要专业设计人员自己去计算,问是问不来了的。不过可以提供方法,有空你自己可以算算看。

地源热泵系统设计

热泵机组的选择

热泵容量的选择;

热泵性能的确定:土壤热泵的性能取决于热泵的进水温度,必须确定室外空气和进水温度之间的关系。进水温度与多个因素有关,如一年的运行时间,土壤类型,土壤换热器的类型、大小等。

冬夏季地下换热量分别是指夏季向土壤排放的热量和冬季从土壤吸收的热量。可以由下述公式计算:

其中,

Q11—夏季向浅层地表排放的热量,kW,Q1—夏季设计总冷负荷,kW

Q12—冬季从浅层地表吸收的热量,kW,Q2—冬季设计总热负荷,kW

COP1—设计工况下水-水热泵机组的制冷系数

COP2—设计工况下水-水热泵机组的供热系数

选择室内末端系统

风机盘管系统,屋顶地板辐射采暖方式,全空气系统等。通常采用风机盘管系统时,空气分布系统的设计主要考虑以下三个方面:

(1)选择安装风管的最佳位置;

(2)根据室内的得热量/热损失计算来选择并确定空气分布器和回风格栅的位置;

(3)根据热泵的风量和静压力,布置风管的走向,确定风管的尺寸。

地源热泵土壤热响应测试

设计地源热泵系统的地热换热器需要知道地下岩土的热物性参数。如果热物性参数不准确,则设计的系统可能达不到负荷需要;也可能规模过大,从而加大初期投资。另外,不同的封井材料、埋管方式对换热都有影响,因此只有在现场直接测量才能正确得到地下岩土的热物性参数。

埋管式地源热泵热响应测试要求

实验主要在三个方面展开:

1)首先是热响应测试,以恒定的加热功率求出地埋管换热器进出口温度随时间的变化情况,通过曲线拟合求出土壤的导热系数等热物性;

2)模拟夏季空调的制冷试验,测量井埋管换热器的放热能力;

3)模拟冬季的制热试验,测量井埋管换热器取热能力。

热响应测试原理

热响应测试步骤

1.合理制定试验方案,根据现场及设计条件,合理选择试验钻孔位置,避免传热干扰,试验包括放热和取热试验;

2.测量并提供地下土壤的初始温度分布;

3.通过测量分析计算地下土层的综合热物性参数,包括土壤导热系数和热容,回填料的热物性参数和配比以及管材的热物性参数;

4.按照设计工况测试,测量提供埋管取热、放热特性,并进行分析对比。

5.根据埋管群布置情况,利用试验及模拟所得的数据,根据实际地源热泵系统的运行情况,对整个地源热泵埋管区域地下热响应进行计算机模拟计算分析,得出:地下土壤温度随时间变化;分别以加辅助散热设备和不加辅助散热设备两种情况下,得到实际运行的土壤热积聚情况分析;并根据土壤热积聚情况分析计算出供冷季和供热季地源热泵系统供冷供热能力。

6.根据模拟分析,为保证全年土壤取放热量平衡给出辅助散热设备的设计容量以及与地埋管换热器联合运行的控制策略。为工程设计提供参考数据。

地埋管土壤换热器设计

在现场勘测的基础上确定换热器埋管采用垂直布置还是水平布置方式。尽管水平布置时通常为浅层埋管,初投资一般会少些,但换热性能比垂直布置时差很多,并且往往受可利用土地面积的限制,所以在实际工程中,一般采用垂直埋管布置方式。

1 水平埋管:水平埋管主要有单沟单管、单沟双管、单沟二层双管、单沟二层四管、单沟二层六管等形式。

2 垂直埋管:一般有单U 形管,双U 形管,W型管、套管式管,小直径螺旋盘管和大直径螺旋盘管,立式柱状管、蜘蛛状管等形式;按埋设深度不同分为浅埋(≤30m)、中埋(31~80m)和深埋(>80m)。目前使用最多的是单U 形管(Single-U-pipe),双U 形管(Double-U-pipe),简单套管式管(Simple Coaxial pipe)。

3 土壤换热器的埋管深度:①钻井深60m 以内井深的钻机成本少,费用低,如果大于60m,其钻机成本会提高;②井深80m 以内,可用国产普通型承压(承压1.0MPa)塑料管,如深度大于80m,需采用高承压塑料管,其成本大大增加;③据比较,井深50m 的造价比100m 的要低30%~50%。上述是针对地面**机房而言,如果采用分室型的水源热泵系统还要考虑建筑高度的影响。

从统计的国内外工程实例看,中埋的地源热泵占多数。

连接方式

地下换热器中流体流动的回路形式有串联和并联两种:

串联系统管径较大,管道费用较高,并且压降特性限制了系统能力。并联系统管径较小管道费用较低,且常常布置成同程式,当每个并联环路之间流量平衡时,其换热量相同,其压降特性有利于提高系统能力。因此,实际工程一般都采用并联同程式。

管材选择及长度计算

管材选择

地埋管应采用化学稳定性好、耐腐蚀、导热系数大、流动阻力小的塑料管材及管件,宜采用聚乙烯管(PE)或聚丁烯管(PB)。(PE 材料按照国际上统一的标准划分为五个等级:PE32 级、PE40 级、PE63 级、PE80 级和PE100 级。用于地源热泵管道PE 管的生产为高密度聚乙烯HDPE,其等级是PE80、PE100 两种)。

地埋管长度计算

地源热泵换热器的换热量应该满足空调主机实际所需最大吸热量和施热量。

根据现场实测的岩土体及回填材料的热物性,以及热泵机参数、建筑物逐月负荷、设定循环液体进出温度、给定换热器结构尺寸,采用专用软件进行计算。也可以用半经验公式计算。

地埋换热器系统水力计算

管道压力损失计算:在同程系统中,选择压力损失最大的热泵机组所在环路作为最不利环路进行阻力计算。

循环泵的选择:单机扬程一般不超32m,变流量水泵,功率不超过30kw。塑料管的摩擦阻力远比铁管小。

确定埋管管长与埋管间距:地下热交换器长度的确定除了已确定的系统布置和管材外,还需要有当地的土壤技术资料,如地下温度、传热系数等(通过热响应实验测得)。规定管间距不小于4米。

地下热平衡设计

《地源热泵系统工程技术规范》GB50366-2009规定:

地埋管换热系统设计应进行全年动态负荷计算,最小计算周期宜为一年。计算周期内,地源热泵系统总释(排)热量宜与其总吸(取)热量相平衡。

各种设计方案的机理:依据岩土体的热平衡状况:即不同地区气候条件、不同功能的空调房间和不同运行方式所形成的累积排热量与累积取热量的状况。

全年累积排、取热量比ral

全年累积排、取热量比ral(ratio of accumulated loads)是全年向地埋管换热器的总排热量与其总取热量之比。

历年累积排、取热总量曲线

ral≈1的工程,冬季开始供热使用,然后在夏季制冷,全年冬夏季取排热总量相等,负荷总量变化曲线为曲线①。反之,夏季开始制冷使用,则为曲线④。

热平衡设计的九种设计方案

据岩土体的累积排热量和累积取热量的平衡状况和我国不同地域、不同气候特点,提出以下9种设计方案:

方案应用的地域性分析

以5个典型气候区域代表城市的全年逐时空调负荷为例分析,5个代表城市分别为严寒A区的齐齐哈尔,严寒B区的沈阳,寒冷地区的北京,夏热冬冷地区的上海,夏热冬暖地区的广州。

设计举例

上海某住宅空调面积212m2

计算空调冷热负荷,并考虑房间同时使用系数,总冷负荷25kW,总热负荷17kW。

选用设备能效比按3.5 计算则夏季向土壤排放热量=25*(1+1/3.5)=32kW。

1)确定管材及埋管管径

选用聚乙烯管材PE63(SDR11),并联环路管径DN20,取温差为10度,则单个回路流量=0.045*32*3.6/10/2=0.26m3/h。

分别计算其它集管管径,分别是DN25,DN32,DN40,DN50(见布置图)

2)确定竖井结构

按保守最小数据35W/m管长

埋管总长度L=32000/35=914m

确定竖井数目及间距

取竖井深度50m ,竖井数量N=914/2/50=9.14

取整数10个,竖井间距取4.5m

3)计算压力损失

各管路为并联同程布置,按流量查阻力表,计算任意一个管段总压力损失为40KPa

计算热泵机组水阻力、其它设备的阻力,所选水泵扬程为15mH2O

4)校核管材承压能力

P=P0+ρgh+0.5Ph=100530+1000*9.8*50+0.5*15=668959Pa

(约0.7MPa)在PE的额定承压能力内。

本文目录

地源热泵原理,地源热泵是什么?

基本概念和原理

地源热泵则是利用水源热泵的一种形式,它是利用水与地能(地下水、土壤或地表水)进行冷热交换来作为水源热泵的冷热源,冬季把地能中的热量“取”出来,供给室内采暖,此时地能为“热源”;夏季把室内热量取出来,释放到地下水、土壤或地表水中,此时地能为“冷源”。地源热泵供暖空调系统主要分三部分:室外地能换热系统、水源热泵机组和室内采暖空调末端系统。其中水源热泵机主要有两种形式:水—水式或水—空气式。三个系统之间靠水或空气换热介质进行热量的传递,水源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。

1、制冷工况

在制冷状态下,地源热泵机组内的压缩机对冷媒做功,使其进行汽—液转化的循环。通过冷媒/空气热交换器内冷媒的蒸发将室内空气循环所需携带的热量吸收至冷媒中,在冷媒循环的同时,再通过冷媒/水热交换器内冷媒的冷凝,由水路循环将冷媒所携带的热量吸收,最终由水路循环转移至土壤里。在室内热量不断转移至地下的过程中,通过冷媒—空气热交换器,以13-7℃的冷风的形式为房间供冷。

2、制热工况

在制热状态下,地源热泵机组内的压缩机对冷媒做功,并通过水路切换将水流动方向切换。由地下的水路循环吸收地下水或土壤的热量,通过冷媒/水热交换器内冷媒的蒸发,将水路循环中的热量吸收至冷媒中,在冷媒循环的同时,再通过冷媒/水热交换器内冷媒的冷凝,由空气循环将冷媒所携带的热量吸收。在地下热量不断转移至室内的过程中,以35-50℃的热水的形式向室内供暖。

3、应用

地源热泵是以地表能(包括土壤、地下水和地表水等)为热源,通过输入少量的高品位能源(如电能),实现低品位热能向高品位热能转移的热泵空调系统。与传统空调和供热系统相比,它具有可再生利用、运行费用低、占地面积小、节约水资源、有利环保等特点。

大家都知道,在南方夏季冷负荷比热负荷要大/北方冷负荷比夏季热负荷小,如果采用浅层地源热泵系统的话,常年的向土壤输送的热量比冷量要大/常年的向土壤输送的热量比冷量要小,那么若干年后是不是会引起地温升高/降低,该系统在该地区就不能使用或使用效果下降,即地热不平问题。显然不平衡是存在的,但是没有足够的数据和模型证明这种不平衡。地埋管平衡问题一直是比较棘手的问题,目前尚未见到不平衡导致系统无法运行的情况,想在理论上做的更有说服力的话需要建筑的全年动态负荷及使用负荷率时间表。目前地源界对此问题尚无定论,仁者见仁,智者见智。

对于冬冷夏热地区:冷负荷大于热负荷,在考虑到压缩机的功率,制冷时排热量大于制热时的吸热量。所以对于做浅层地源热泵之前,要先进行热平衡计算。夏季向地下放热,冬季向地源取热,两者在部分地区(夏季冷负荷和**负荷可以持平的地区)大体平衡。不平衡是动态变化的,随着地温的升高或降低,该地块的吸热或放热的能力也会变化。最后会趋于一种失效平衡。

一般的地源热泵可以从以下角度分析:先计算出夏天和冬天散热量(冷负荷)和吸热量(热负荷),如果大体平衡就不需采取别的措施。

1、如果夏天的散热大于冬天的吸热,那么就应该减少其散热量,可以采用热回收,把冷凝热回收一部分,如果仍然平衡不了,那么就加冷却塔,直到两者平衡为止。

2、相反如果冬天吸热大于夏天散热,那么就减少冬天的吸热量,可以采用锅炉分担部分负荷,以达到两者平衡的目的。目前大家都在用夏季辅助放热 冬季辅助收热的方法进行平衡 但是没有确切的方法和方案

3、先给建筑建立模型(可以选用SKetchUp、legacyOpenStudio和DesignBuilder进行建模),计算全年累计负荷。得出向土壤的吸热、放热负荷。然后用EnergyPlus软件j进行负荷模拟,看看是否在管数最合理的情况下平衡。

目前解决技术措施主要有三个:

1、需要生活热水的项目采用热回收(全热和余热皆可)技术,把一部分排热转化成热水,即分担部分地埋管的负担,又有免费的热水用,一举两得。也能够缓解夏季散热量大于冬季吸热量的问题;缓解程度和热回收量大小有关;

2、地埋管系统按照冬季采暖负荷进行设计;如果不能平衡,排热过多的话,夏季偏少部分通过增加单冷机组、无需生活热水的项目只能加冷却塔了。实现制冷量的补充。目前工程中采用辅助冷热源的项目多是埋管面积不够或是为了节省初投资。

3、地埋管系统按照夏季制冷量设计,冬季吸热过多,通过增加辅助散热措施、如东北寒冷地区,采暖时间比制冷时间长,冬季吸热量大于夏季排热,可采用辅助热源,如锅炉。提高地下的热补充量使之平衡。不过北方多集中采暖,鲜有为了热平衡才使用辅助源的。

该三个措施,严格意义上是从技术层次加以考虑,但是,从初投资角度考虑,第三种方案不合适;可以说,如何在经济性和稳定性之间寻找最佳的平衡点,还是值得我们去进一步的探讨和研究。

地源热泵原理-地源热泵是什么

什么是地源热泵?

地源热泵则是利用水与地能(地下水、土壤或地表水)进行冷热交换来作为地源热泵的冷热源。冬季把地能中的热量“取”出来,供给室内采暖,此时地能为“热源”;夏季把室内热量取出来,释放到地下水、土壤或地表水中,此时地能为“冷源”。

还是很绕?

简单说,地下水冬暖夏凉,冬天从这里面提取热量加热室内,夏天也从这里提取“冷量”给室内降温。

当然,除了地下水,地源热泵还可以利用地下水、江河湖水、水库水、海水、城市中水、工业尾水、坑道水等各类水资源,以及土壤,作为地源热泵的冷、热源。

地源泵简单原理?

利用岩土层储存的热能为建筑供暖制冷,通过地源热泵系统内的介质把地下土壤的温度传递到地源热泵主机,再通过少量的电能转化达到制冷和取暖的功能。

一元热泵的工作原理与家用的什么相同?

地源热泵的工作原理与家用电冰箱相同,通过制冷在蒸发器、压缩机、冷疑器和膨胀阀等部件中气相变化的循环,将低温物体的热量传递到高温物体中去。

地源热泵如何将地下水提升到40多度然后供暖的?

看来要先科普下地源热泵:

地源热泵是陆地浅层能源通过输入少量的高品位能源(如电能)实现由低品位热能向高品位热能转移。

地源热泵还利用了地下土壤巨大的蓄热蓄冷能力,冬季把热量从地下土壤中转移到建筑物内部,夏季再把地下的冷量转移到建筑物内部,只是冬夏两季工作的温度范围不同而已。

地源热泵的分类与应用形式

根据地热能交换系统形式的不同,地源热泵系统分为地埋管地源热泵系统、地下水地源热泵系统和地表水地源热泵系统。

埋管式土壤源热泵系统

垂直埋管地源热泵系统:换热器井管路直接接入机房、换热器井管路汇集到集水器。

垂直埋管-桩基换热器:

垂直埋管-地热智能桥:

螺旋埋管地源热泵系统:长轴水平布置的螺旋埋管、长轴竖直布置的螺旋埋管、沟渠集水器式螺旋埋管。

埋管式地源热泵应用方式

你问这些问题需要专业设计人员自己去计算,问是问不来了的。不过可以提供方法,有空你自己可以算算看。

地源热泵系统设计

热泵机组的选择

热泵容量的选择;

热泵性能的确定:土壤热泵的性能取决于热泵的进水温度,必须确定室外空气和进水温度之间的关系。进水温度与多个因素有关,如一年的运行时间,土壤类型,土壤换热器的类型、大小等。

冬夏季地下换热量分别是指夏季向土壤排放的热量和冬季从土壤吸收的热量。可以由下述公式计算:

其中,

Q11—夏季向浅层地表排放的热量,kW,Q1—夏季设计总冷负荷,kW

Q12—冬季从浅层地表吸收的热量,kW,Q2—冬季设计总热负荷,kW

COP1—设计工况下水-水热泵机组的制冷系数

COP2—设计工况下水-水热泵机组的供热系数

选择室内末端系统

风机盘管系统,屋顶地板辐射采暖方式,全空气系统等。通常采用风机盘管系统时,空气分布系统的设计主要考虑以下三个方面:

(1)选择安装风管的最佳位置;

(2)根据室内的得热量/热损失计算来选择并确定空气分布器和回风格栅的位置;

(3)根据热泵的风量和静压力,布置风管的走向,确定风管的尺寸。

地源热泵土壤热响应测试

设计地源热泵系统的地热换热器需要知道地下岩土的热物性参数。如果热物性参数不准确,则设计的系统可能达不到负荷需要;也可能规模过大,从而加大初期投资。另外,不同的封井材料、埋管方式对换热都有影响,因此只有在现场直接测量才能正确得到地下岩土的热物性参数。

埋管式地源热泵热响应测试要求

实验主要在三个方面展开:

1)首先是热响应测试,以恒定的加热功率求出地埋管换热器进出口温度随时间的变化情况,通过曲线拟合求出土壤的导热系数等热物性;

2)模拟夏季空调的制冷试验,测量井埋管换热器的放热能力;

3)模拟冬季的制热试验,测量井埋管换热器取热能力。

热响应测试原理

热响应测试步骤

1.合理制定试验方案,根据现场及设计条件,合理选择试验钻孔位置,避免传热干扰,试验包括放热和取热试验;

2.测量并提供地下土壤的初始温度分布;

3.通过测量分析计算地下土层的综合热物性参数,包括土壤导热系数和热容,回填料的热物性参数和配比以及管材的热物性参数;

4.按照设计工况测试,测量提供埋管取热、放热特性,并进行分析对比。

5.根据埋管群布置情况,利用试验及模拟所得的数据,根据实际地源热泵系统的运行情况,对整个地源热泵埋管区域地下热响应进行计算机模拟计算分析,得出:地下土壤温度随时间变化;分别以加辅助散热设备和不加辅助散热设备两种情况下,得到实际运行的土壤热积聚情况分析;并根据土壤热积聚情况分析计算出供冷季和供热季地源热泵系统供冷供热能力。

6.根据模拟分析,为保证全年土壤取放热量平衡给出辅助散热设备的设计容量以及与地埋管换热器联合运行的控制策略。为工程设计提供参考数据。

地埋管土壤换热器设计

在现场勘测的基础上确定换热器埋管采用垂直布置还是水平布置方式。尽管水平布置时通常为浅层埋管,初投资一般会少些,但换热性能比垂直布置时差很多,并且往往受可利用土地面积的限制,所以在实际工程中,一般采用垂直埋管布置方式。

1 水平埋管:水平埋管主要有单沟单管、单沟双管、单沟二层双管、单沟二层四管、单沟二层六管等形式。

2 垂直埋管:一般有单U 形管,双U 形管,W型管、套管式管,小直径螺旋盘管和大直径螺旋盘管,立式柱状管、蜘蛛状管等形式;按埋设深度不同分为浅埋(≤30m)、中埋(31~80m)和深埋(>80m)。目前使用最多的是单U 形管(Single-U-pipe),双U 形管(Double-U-pipe),简单套管式管(Simple Coaxial pipe)。

3 土壤换热器的埋管深度:①钻井深60m 以内井深的钻机成本少,费用低,如果大于60m,其钻机成本会提高;②井深80m 以内,可用国产普通型承压(承压1.0MPa)塑料管,如深度大于80m,需采用高承压塑料管,其成本大大增加;③据比较,井深50m 的造价比100m 的要低30%~50%。上述是针对地面**机房而言,如果采用分室型的水源热泵系统还要考虑建筑高度的影响。

从统计的国内外工程实例看,中埋的地源热泵占多数。

连接方式

地下换热器中流体流动的回路形式有串联和并联两种:

串联系统管径较大,管道费用较高,并且压降特性限制了系统能力。并联系统管径较小管道费用较低,且常常布置成同程式,当每个并联环路之间流量平衡时,其换热量相同,其压降特性有利于提高系统能力。因此,实际工程一般都采用并联同程式。

管材选择及长度计算

管材选择

地埋管应采用化学稳定性好、耐腐蚀、导热系数大、流动阻力小的塑料管材及管件,宜采用聚乙烯管(PE)或聚丁烯管(PB)。(PE 材料按照国际上统一的标准划分为五个等级:PE32 级、PE40 级、PE63 级、PE80 级和PE100 级。用于地源热泵管道PE 管的生产为高密度聚乙烯HDPE,其等级是PE80、PE100 两种)。

地埋管长度计算

地源热泵换热器的换热量应该满足空调主机实际所需最大吸热量和施热量。

根据现场实测的岩土体及回填材料的热物性,以及热泵机参数、建筑物逐月负荷、设定循环液体进出温度、给定换热器结构尺寸,采用专用软件进行计算。也可以用半经验公式计算。

地埋换热器系统水力计算

管道压力损失计算:在同程系统中,选择压力损失最大的热泵机组所在环路作为最不利环路进行阻力计算。

循环泵的选择:单机扬程一般不超32m,变流量水泵,功率不超过30kw。塑料管的摩擦阻力远比铁管小。

确定埋管管长与埋管间距:地下热交换器长度的确定除了已确定的系统布置和管材外,还需要有当地的土壤技术资料,如地下温度、传热系数等(通过热响应实验测得)。规定管间距不小于4米。

地下热平衡设计

《地源热泵系统工程技术规范》GB50366-2009规定:

地埋管换热系统设计应进行全年动态负荷计算,最小计算周期宜为一年。计算周期内,地源热泵系统总释(排)热量宜与其总吸(取)热量相平衡。

各种设计方案的机理:依据岩土体的热平衡状况:即不同地区气候条件、不同功能的空调房间和不同运行方式所形成的累积排热量与累积取热量的状况。

全年累积排、取热量比ral

全年累积排、取热量比ral(ratio of accumulated loads)是全年向地埋管换热器的总排热量与其总取热量之比。

历年累积排、取热总量曲线

ral≈1的工程,冬季开始供热使用,然后在夏季制冷,全年冬夏季取排热总量相等,负荷总量变化曲线为曲线①。反之,夏季开始制冷使用,则为曲线④。

热平衡设计的九种设计方案

据岩土体的累积排热量和累积取热量的平衡状况和我国不同地域、不同气候特点,提出以下9种设计方案:

方案应用的地域性分析

以5个典型气候区域代表城市的全年逐时空调负荷为例分析,5个代表城市分别为严寒A区的齐齐哈尔,严寒B区的沈阳,寒冷地区的北京,夏热冬冷地区的上海,夏热冬暖地区的广州。

设计举例

上海某住宅空调面积212m2

计算空调冷热负荷,并考虑房间同时使用系数,总冷负荷25kW,总热负荷17kW。

选用设备能效比按3.5 计算则夏季向土壤排放热量=25*(1+1/3.5)=32kW。

1)确定管材及埋管管径

选用聚乙烯管材PE63(SDR11),并联环路管径DN20,取温差为10度,则单个回路流量=0.045*32*3.6/10/2=0.26m3/h。

分别计算其它集管管径,分别是DN25,DN32,DN40,DN50(见布置图)

2)确定竖井结构

按保守最小数据35W/m管长

埋管总长度L=32000/35=914m

确定竖井数目及间距

取竖井深度50m ,竖井数量N=914/2/50=9.14

取整数10个,竖井间距取4.5m

3)计算压力损失

各管路为并联同程布置,按流量查阻力表,计算任意一个管段总压力损失为40KPa

计算热泵机组水阻力、其它设备的阻力,所选水泵扬程为15mH2O

4)校核管材承压能力

P=P0+ρgh+0.5Ph=100530+1000*9.8*50+0.5*15=668959Pa

(约0.7MPa)在PE的额定承压能力内。

免费领取99套装修效果图
免费获取99套装修效果图,现在预约,客服稍后会直接发到您邮箱
填写您的称呼
填写您的联系方式
填写您房屋所在的城市

原创文章,作者:一品装修百科网小编,如若转载,请注明出处:http://www.hblxgg.cc/994.html